A WARNING
INTERNALS

INCLUDED

©
/S

NET GC Internals

[Concurrent] Sweep phase

@konradkokosa / @dotnetosorg

1/16

.NET GC Internals Agenda

e Introduction - roadmap and fundamentals, source code, ...

e Mark phase - roots, object graph traversal, mark stack, mark/pinned flag, mark
list, ...

e Concurrent Mark phase - mark array/mark word, concurrent visiting, floating

garbage, write watch list, ...

Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...

Sweep phase - free list threading, concurrent sweep, ...

Compact phase - relocate references, compact, ...

Generations - physical organization, card tables, ...

Allocations - bump pointer allocator, free list allocator, allocation context, ...

Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,

Thread-local Statics (TLS), ...

Q&A - "but why can't | manually delete an object?", ...

2/16

Sweep

All no-longer reachable objects must be turned into a free space:

A B

C

| F] 6

e

3/16

Sweep

All no-longer reachable objects must be turned into a free space:

In the NET GC terminology, it means that it must transform all or some gaps into

free-list items.

B

C

| F] 6

e

e

3/16

Sweep

All no-longer reachable objects must be turned into a free space:

A | B] C |DJEJF]G |-

In the NET GC terminology, it means that it must transform all or some gaps into
free-list items. Free-list items are then used for "allocations'.

3/16

Mark, Plan, Sweep, Compact...

Let's make a short stop here.

4 /16

https://miro.com/app/board/o9J_lS3VxqQ=/

Concurrent GC?

— decide if do background GC
7 or force blocking one

IS:
if ((settings.condemned_generation == max_generation) &&

(should_do_blocking_collection == FALSE) &&

gc_can_use_concurrent &&

Itemp_disable_concurrent_p &&

((settings.pause_mode == pause_interactive) || (settings.pause_mode == pause_sustained_low_latency)))
{

keep_bgc_threads_p = TRUE;

c_write (settings.concurrent, TRUE);

memset (&bgc_data_global, 0, sizeof(bgc_data_global));

memcpy (&bgc_data_global, &gc_data_global, sizeof(gc_data_global));
3

5/16

Non-Concurrent Sweep

garbage_collect(n) Story of the gc.cpp
file
generation_to_condemn
CELIEHNEFEEEs should_do_blocking_collection

or force blocking one

waken up on
GC thread|s)

background_mark_phase

mark_phase
Comy ; ;
(/ﬁ o 'Pacting EEIGLETCENEES w fix generatlon: boundaries

H background_sweep plan_ph decide_on_compacting gemd
= o=

bookkeeping etc.

So, we are after Mark & Plan phases.

6/16

Non-Concurrent Sweep

Using the knowledge from the Plan phase, go by plug-gap pair and:

o for every gap:
o if bigger that 2x minimum object size - create free-list items from it
o if smaller - treat as unused free space/fragmentation

e recover pre/post-plugs

e ... (additional bookkeeping)

7 /16

Non-Concurrent Sweep

Using the knowledge from the Plan phase, go by plug-gap pair and:

o for every gap:
o if bigger that 2x minimum object size - create free-list items from it
o if smaller - treat as unused free space/fragmentation

e recover pre/post-plugs

e ... (additional bookkeeping)

gap plug gap plug pinned plug gap plug
A A A A

T L
T T

%

1o
[{e]
0 1%

24

0x1030 | 24 |
010

0x1060 %
\
800
X
56
160
“0]0
0x1118 § JL
N

0x1048
0x1098 Ry

saved_pre_plug

7 /16

Non-Concurrent Sweep

Using the knowledge from the Plan phase, go by plug-gap pair and:

o for every gap:
o if bigger that 2x minimum object size - create free-list items from it
o if smaller - treat as unused free space/fragmentation

e recover pre/post-plugs

e ... (additional bookkeeping)

gap plug gap plug pinned plug gap plug
A A A

L T T T
T

%

= j/
ol

24

0x1030 | 24 |

S
“80 0|

e

l

0x1060 %
\
0x10EQ \
56

160
“0]0

0x1118 § JL
N

0x1048
0x1098
0x10C8

saved_pre_plug

free
(unused) free space free space

A A
f \

\%\ \%_//

I

Vi

undo

undo

7 /16

Non-Concurrent Sweep

Using the knowledge from the Plan phase, go by plug-gap pair and:

o for every gap:
o if bigger that 2x minimum object size - create free-list items from it
o if smaller - treat as unused free space/fragmentation

e recover pre/post-plugs

e ... (additional bookkeeping)

gap plug gap
A

T L
T T

%

plug pinned plug gap plug
A A

800
N

\ g
56

160
00

24
R

0x1030 | 24 |

1o
[{e]
0 1%

0x1060 %
\

0x1048
0x1098

saved_pre_plug

free

(unused) free space free space
(_H f A \ f A \
Ol L T T OI T T T
Sl ! Sl !
5=\ %/ m%:ﬁi“’:\'\ %

~_ — —

Important: we don't zero memory now - why bother?! 7 /16

Sweep - Large Object Heap

If no compacting, there is no Plan phase for it. Just go object by object and thread
free-list items from not marked ones.

8/16

Concurrent Sweep

Story of the gc.cpp
file

garbage_collect(n)

generation_to_condemn

decide if do background GC

or force blockingone should_do_blocking_collection

waken up on
GC thread|s)

background_mark_phase

fix generations boundaries
2 compact_phase -

mark_phase
(/ﬁcomi}ﬁt[mg relocate_phase

plan_phase decide_on_compacting —)0

background_sweep

cweeP make_free_lists recover_saved_pinned_info

bookkeeping etc.

So, we didn't have Plan phase! We are just doing background_mark_phase (populating
mark_array aka mark list) and background_sweep.

9/16

Concurrent Sweep

background_sweep is similar to the non-concurrent Plan phase - it scans object by

object to group non-reachable objects into gaps and threads them into free-list
items.

10/16

—_ e e = e e —
Q
Oml (a]
9]
0]
p —_— s
T L] =
oy L
e}
Oml m
T O == — e
= | |
sv=_4 it _ <

gen0/1/2

S

: in
| ,
------------T-r------- T

GC,

Concurrent Sweep

/16

Concurrent Sweep

Oor1 o+ 0
FGC FGC FGC
A |
| {
— |
|
T2 - == I
L
1
[1 I | 11 |
GC, mmmmemmmmm== Tep=====-- M e = ————
gen0//2 11 I fr" Ge I
IAt—B tCie D i

e Dis Concurrent Sweep - the mark array contains information about all marked
(reachable) objects

/16

Concurrent Sweep

|
fijll GC

b o e e e e

e Dis Concurrent Sweep - the mark array contains information about all marked
(reachable) objects

e We sweep concurrently with the application (which may be allocating) @)

/16

Concurrent Sweep

b o e e e e

|
fijll GC

e Dis Concurrent Sweep - the mark array contains information about all marked
(reachable) objects

e We sweep concurrently with the application (which may be allocating) @)
e however, we sweep only already not reachable object - no worries!

free
(unused) free space free space

Nizs 7/ ==~ e
w =

/16

Concurrent Sweep

|
fijll GC

b o e e e e

D is Concurrent Sweep - the mark array contains information about all marked
(reachable) objects

we sweep concurrently with the application (which may be allocating) @
e however, we sweep only already not reachable object - no worries!

free
(unused) free space free space

Nizs 7/ ==~ e
w =

but... allocators use free-list items, created during sweeping... so how does it all
cooperate?! &)

/16

Concurrent Sweep

FGC G+C 4“ F0+C
|| [— N— J"ij—i
|
" g /I
— l
. .{j—ﬂ. N .
I | I 1 i
1 I
GGy mmmmmmmme—-- ror=======1% ™7 o mmmmm————
gen0/1/2 I I | irH GC I
IAf— B —iC——D —

1. before the runtime resumes threads - free-item lists are cleared in all Gen(s)
o yes, allocators will not be aware of free space for a short period of time (just
allocating at the end of already consumed space)

12/16

Concurrent Sweep

FGC G+C 4‘ FO+C
|1 | —A—y J-,ij—i
|
T g 2
— l
. .{j—ﬂ. N .
l | Il i
11 I
GGy mmmmmmmme—-- ror=======1% ™7 o mmmmm————
gen0/1/2 I I | irH GC I
JAf—B—iC——D ——

1. before the runtime resumes threads - free-item lists are cleared in all Gen(s)
o yes, allocators will not be aware of free space for a short period of time (just
allocating at the end of already consumed space)
2. concurrent Sweep of Gen0/1 - operating on a temporary free-list.
o this temporary list is published when finished (and gen O/ starts to use it)
o Foreground GC is prohibited

12/16

Concurrent Sweep

1. before the runtime resumes threads - free-item lists are cleared in all Gen(s)
o yes, allocators will not be aware of free space for a short period of time (just
allocating at the end of already consumed space)
2. concurrent Sweep of Gen0/1 - operating on a temporary free-list.
o this temporary list is published when finished (and gen O/ starts to use it)
o Foreground GC is prohibited
3. concurrent Sweep of Gen2/LOH - operating on the main free-list.
o Foreground GCs are allowed - if object gets promoted from genl to gen2 it
uses already added free-list items. It is safe and without overhead as
Background GC is suspended for the time of Foreground GC.

o LOH allocations are not allowed - it would require multithreaded access to the
free list 12/16

Concurrent Sweep

"LOH allocations are not allowed":

ETW/LLTng events BGCAllocWaitBegin/BGCAllocWaitEnd used to show "LOH Allocation
Pause (due to background GC) > 200 Msec"section in PerfView's GCStats report

13/16

Non-Concurrent Sweep

"Start from the gec_heap: :plan_phase method. In the part enclosed by else block
of should_compact conditional check, the two most important methods are
called: gc_heap: :make_free_lists creates free-list items from gaps and

gc_heap: :recover_saved_pinned_info recovers objects destroyed by pre and post

plugs.

The main work horse is make_free_list_in_brick that recursively traverse plug
tree to thread free items from gaps."

14 /16

Concurrent Sweep

"In case of CoreCLR code, concurrent sweep phase is included in the

gc_heap: :background_sweep method. It calls gc_heap: :background_ephemeral_sweep
method scanning objects from generation O and 1, and then scans objects
from generation 2 and Large Object Heap (calling gc_heap: :allow_fgc method
at some well-defined safe points, after each of 256 objects has been scanned).
During object scanning, already known gc_heap: : thread_gap or

gc_heap: :make_unused_array methods are used to create a free-list item or small
unusable free space respectively.

Mentioned LOH allocations are blocked by global gc_heap: :gc_lh_block_event
which is used in gc_heap: :wait_for_background_planning by calling

gc_heap: :user_thread_wait on it. This path is used at the beginning of the
gc_heap::a_fit_free_list_large_p method, which is in fact the begging of the
entire LOH allocation path."

15/16

Concurrent Sweep

"For code related to free object, start from gec_heap: :make_unused_array method,
which prepares it. As you will see it uses static global pointer to
g_pFreeObjectMethodTable as a new MT. Then it adds such gap to the free list by
calling generation_allocator(gen)->thread_item (gap_start, size). However,
threading is done only for gaps larger than the double size of the minimum
object size. This helps to ignore the list management overhead for such small
items."

16/16

