

.NET GC Internals

[Concurrent] Sweep phase
@konradkokosa / @dotnetosorg

1 / 16

.NET GC Internals Agenda

Introduction - roadmap and fundamentals, source code, ...
Mark phase - roots, object graph traversal, mark stack, mark/pinned �ag, mark
list, ...
Concurrent Mark phase - mark array/mark word, concurrent visiting, �oating
garbage, write watch list, ...
Plan phase - gap, plug, plug tree, brick table, pinned plug, pre/post plug, ...
Sweep phase - free list threading, concurrent sweep, ...
Compact phase - relocate references, compact, ...
Generations - physical organization, card tables, ...
Allocations - bump pointer allocator, free list allocator, allocation context, ...
Roots internals - stack roots, GCInfo, partially/full interruptible methods, statics,
Thread-local Statics (TLS), ...
Q&A - "but why can't I manually delete an object?", ...

2 / 16

Sweep

All no-longer reachable objects must be turned into a free space:

3 / 16

Sweep

All no-longer reachable objects must be turned into a free space:

In the .NET GC terminology, it means that it must transform all or some gaps into
free-list items.

3 / 16

Sweep

All no-longer reachable objects must be turned into a free space:

In the .NET GC terminology, it means that it must transform all or some gaps into
free-list items. Free-list items are then used for "allocations".

3 / 16

Mark, Plan, Sweep, Compact...

Let's make a short stop here.

4 / 16

https://miro.com/app/board/o9J_lS3VxqQ=/

Concurrent GC?

is:

if ((settings.condemned_generation == max_generation) &&
 (should_do_blocking_collection == FALSE) &&
 gc_can_use_concurrent &&
 !temp_disable_concurrent_p &&
 ((settings.pause_mode == pause_interactive) || (settings.pause_mode == pause_sustained_low_latency)))
{
 keep_bgc_threads_p = TRUE;
 c_write (settings.concurrent, TRUE);

memset (&bgc_data_global, 0, sizeof(bgc_data_global));
memcpy (&bgc_data_global, &gc_data_global, sizeof(gc_data_global));

}

5 / 16

Non-Concurrent Sweep

So, we are after Mark & Plan phases.

6 / 16

Non-Concurrent Sweep

Using the knowledge from the Plan phase, go by plug-gap pair and:

for every gap:
if bigger that 2x minimum object size - create free-list items from it
if smaller - treat as unused free space/fragmentation

recover pre/post-plugs
... (additional bookkeeping)

7 / 16

Non-Concurrent Sweep

Using the knowledge from the Plan phase, go by plug-gap pair and:

for every gap:
if bigger that 2x minimum object size - create free-list items from it
if smaller - treat as unused free space/fragmentation

recover pre/post-plugs
... (additional bookkeeping)

7 / 16

Non-Concurrent Sweep

Using the knowledge from the Plan phase, go by plug-gap pair and:

for every gap:
if bigger that 2x minimum object size - create free-list items from it
if smaller - treat as unused free space/fragmentation

recover pre/post-plugs
... (additional bookkeeping)

7 / 16

Non-Concurrent Sweep

Using the knowledge from the Plan phase, go by plug-gap pair and:

for every gap:
if bigger that 2x minimum object size - create free-list items from it
if smaller - treat as unused free space/fragmentation

recover pre/post-plugs
... (additional bookkeeping)

Important: we don't zero memory now - why bother?! 7 / 16

Sweep - Large Object Heap

If no compacting, there is no Plan phase for it. Just go object by object and thread
free-list items from not marked ones.

8 / 16

Concurrent Sweep

So, we didn't have Plan phase! We are just doing background_mark_phase (populating
mark_array aka mark list) and background_sweep.

9 / 16

Concurrent Sweep

background_sweep is similar to the non-concurrent Plan phase - it scans object by
object to group non-reachable objects into gaps and threads them into free-list
items.

10 / 16

Concurrent Sweep

11 / 16

Concurrent Sweep

D is Concurrent Sweep - the mark array contains information about all marked
(reachable) objects

11 / 16

Concurrent Sweep

D is Concurrent Sweep - the mark array contains information about all marked
(reachable) objects
we sweep concurrently with the application (which may be allocating) 😱

11 / 16

Concurrent Sweep

D is Concurrent Sweep - the mark array contains information about all marked
(reachable) objects
we sweep concurrently with the application (which may be allocating) 😱
however, we sweep only already not reachable object - no worries!

11 / 16

Concurrent Sweep

D is Concurrent Sweep - the mark array contains information about all marked
(reachable) objects
we sweep concurrently with the application (which may be allocating) 😱
however, we sweep only already not reachable object - no worries!

but... allocators use free-list items, created during sweeping... so how does it all
cooperate?!🤔

11 / 16

Concurrent Sweep

1. before the runtime resumes threads - free-item lists are cleared in all Gen(s)
yes, allocators will not be aware of free space for a short period of time (just
allocating at the end of already consumed space)

12 / 16

Concurrent Sweep

1. before the runtime resumes threads - free-item lists are cleared in all Gen(s)
yes, allocators will not be aware of free space for a short period of time (just
allocating at the end of already consumed space)

2. concurrent Sweep of Gen0/1 - operating on a temporary free-list:
this temporary list is published when �nished (and gen 0/1 starts to use it)
Foreground GC is prohibited

12 / 16

Concurrent Sweep

1. before the runtime resumes threads - free-item lists are cleared in all Gen(s)
yes, allocators will not be aware of free space for a short period of time (just
allocating at the end of already consumed space)

2. concurrent Sweep of Gen0/1 - operating on a temporary free-list:
this temporary list is published when �nished (and gen 0/1 starts to use it)
Foreground GC is prohibited

3. concurrent Sweep of Gen2/LOH - operating on the main free-list:
Foreground GCs are allowed - if object gets promoted from gen1 to gen2 it
uses already added free-list items. It is safe and without overhead as
Background GC is suspended for the time of Foreground GC.
LOH allocations are not allowed - it would require multithreaded access to the
free list 12 / 16

Concurrent Sweep

"LOH allocations are not allowed":

ETW/LLTng events BGCAllocWaitBegin/BGCAllocWaitEnd used to show "LOH Allocation
Pause (due to background GC) > 200 Msec" section in PerfView’s GCStats report

13 / 16

Non-Concurrent Sweep

"Start from the gc_heap::plan_phase method. In the part enclosed by else block
of should_compact conditional check, the two most important methods are
called: gc_heap::make_free_lists creates free-list items from gaps and
gc_heap::recover_saved_pinned_info recovers objects destroyed by pre and post
plugs.

The main work horse is make_free_list_in_brick that recursively traverse plug
tree to thread free items from gaps."

14 / 16

Concurrent Sweep

"In case of CoreCLR code, concurrent sweep phase is included in the
gc_heap::background_sweep method. It calls gc_heap::background_ephemeral_sweep
method scanning objects from generation 0 and 1, and then scans objects
from generation 2 and Large Object Heap (calling gc_heap::allow_fgc method
at some well-de�ned safe points, after each of 256 objects has been scanned).
During object scanning, already known gc_heap::thread_gap or
gc_heap::make_unused_array methods are used to create a free-list item or small
unusable free space respectively.

Mentioned LOH allocations are blocked by global gc_heap::gc_lh_block_event
which is used in gc_heap::wait_for_background_planning by calling
gc_heap::user_thread_wait on it. This path is used at the beginning of the
gc_heap::a_fit_free_list_large_p method, which is in fact the begging of the
entire LOH allocation path."

15 / 16

Concurrent Sweep

"For code related to free object, start from gc_heap::make_unused_array method,
which prepares it. As you will see it uses static global pointer to
g_pFreeObjectMethodTable as a new MT. Then it adds such gap to the free list by
calling generation_allocator(gen)->thread_item (gap_start, size). However,
threading is done only for gaps larger than the double size of the minimum
object size. This helps to ignore the list management overhead for such small
items."

16 / 16

